Lightforms, Digitally Fabricated
Known to many architects as that translucent film paper on which archaic hand drawings become worthy of pin-up, mylar is making an illuminating entrance into the realm of the three-dimensional. From PROJECTiONE, students have lasercut mylar to produce pieces and joints to create these exquisite hand-assembled light shades.
Lightforms uses a parametric Grasshopper file in Rhinoceros that allows the user to adjust the size, rotation, and density of tiles on the form. This 'set of editable rules' in the software offers the freedom to immediately visualize any tile adjustments in Lightforms and prototype infinite iterations. While the mylar is indeed lasercut, the components are hand assembled in descending order using a series of simple locking joints to link piece to piece and column to column. The students wrote a script to interpret a specific curve, determine the number of parts needed, and layout each component with its intersections -- all which would be a very time-consuming process when prepping files for the lasercutter, if done without the script. "Time saved in production of digital files is spent on the assembly of the piece, allowing for entirely custom elements that are assembled similarly." PROJECTiONE has an impressive portfolio of student work that is really rumbling at the frontier of digital design and production. If you're one to become fluttery by all things lasercuttery, I'd recommend taking a look at some of their other fascinating projects, including the Arduino-controlled Arcus Animus kinetic mesh system (done in collaboration with Phillip Beasley Architects) and the ribbon-like lattice Bodhi Tree installation.
Below is a video showing the fabrication process of Lightforms:
Photos by PROJECTiONE
Published
Last Updated